Biology 150: 3 rd in-class ex October 29, 2012	camination	Name
Indicate the lab you are <u>regi</u>	stered in:	
Tuesday, 8-9:50	Tuesday, 10-11:50	Tuesday, 12-1:50
Tuesday, 3-4:50	<u>Tuesday, 5-6:50</u>	<u>Thursday, 3-4:50</u>
response. There are 20 ques		use the back of the page to complete your us three points in bonus questions). The
concentration of the		concentration of the products is 4M and the
b) what is K_{eq} ?		
2) Which one(s) of thes (1)	se are changed when a reaction is	catalyzed by an enzyme: $\Delta G, \Delta H, \Delta S, E_a$?
the initial enzyme of	-	nt because isoleucine can bind reversibly to and slow enzyme activity. This form of (1)
4) Enzymes are temper activity. (2)	ature sensitive. In the chart below	plot the effect of temperature on enzyme
rate of reaction		
lo	DW .	high
	temperature	

5) What is meant by allosteric enzyme regulation. (2)

6)	How does competitive inhibition differ from non-competitive enzyme regulation? (2)
7)	Glutamic acid conversion to glutamine (glutamic acid + $NH_3 \rightarrow$ glutamine) is an endergonic reaction made possible when it is part of a so-called coupled reaction. Explain how energy coupling actually makes this reaction possible. (2)
8)	In enzyme regulation, what is cooperativity? (2)
9)	Define catabolism. (1)
10)	Oxidation and reduction, which releases energy? (1)
11)	Starting with a molecule of glucose, outline glycolysis. Name (and indicate quantities) of two intermediate molecules and the end molecules and the involvement of all energy carrier molecules. (4)

12) In aerobic respiration where (and how many) CO ₂ molecules are produced from each glucose entering glycolysis? (2)
13) How many of each type of energy carrier molecule are produced by each turn of the citric acid cycle? (3)
14) Define chemiosmosis. (2)
15) Complete respiration of a glucose molecule is currently thought to yield 30 – 32 molecules of ATP. Explain exactly where those numbers come from. (4)
16) Cyanide and DNP (2,4-dinitrophenol) have dissimilar effects on respiration. Explain what each does and the consequences. (4)

17) There are two forms of fermentation. Who does which? What are the products in each case? (4)	
18) What is the function of fermentation? (1)	
19) Outline the path of electrons in cyclic photophosporylation. (6)	
20) Describe the experiment conducted by Avery, Macleod, and McCarty to determine the chemical basis of bacterial transformation. (4)	
Bonus questions:	
(1) Which important microbiologist was killed when a bomb struck his lab during WWII? (1)	
(2) Name Alfred Hershey's assistant for his 1952 experiment demonstrating the role of DNA in bacterial infection by phages. (1)	
(3) Who produced the X-ray crystallography image that solve the structure of DNA? (1)	